

European Journal of Pharmacology 391 (2000) 317-320

Short communication

A novel dual regulator of tumor necrosis factor-α and interleukin-10 protects mice from endotoxin-induced shock

Tetsuko Fukuda *, Hiroshi Sumichika, Meguru Murata, Tokushi Hanano, Kunitomo Adachi, Masao Hisadome

Research Laboratories, Yoshitomi Pharmaceutical Industries, 955 Koiwai, Yoshitomi-cho, Chikujo-gun, Fukuoka 871-8550, Japan Received 21 January 2000; accepted 28 January 2000

Abstract

A pyrimidylpiperazine derivative, N-[1-(4-{[4-(pyrimidin-2-yl)piperazin-1-yl]methyl}phenyl)cyclopropyl]acetamide (Y-39041), is a dual cytokine regulator of tumor necrosis factor (TNF)- α and interleukin-10 production. Lipopolysaccharide-induced TNF- α release in BALB/c mice was inhibited by the oral treatment with the compound at 10–100 mg/kg (about 80% suppression) while interleukin-10 release was augmented (about 10-fold increase at 30 mg/kg). In addition, Y-39041 (30 mg/kg, p.o.) completely protected mice from lipopolysaccharide-induced death by the treatment before and after lipopolysaccharide injection. The finding that Y-39041 suppresses TNF- α production and stimulates interleukin-10 production at the same time provides new insights for the treatment of septic shock, rheumatoid arthritis and Crohn's diseases. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Interleukin-10; TNF- α , tumor necrosis factor- α ; Lipopolysaccharide

1. Introduction

Endotoxin elicits tumor necrosis factor (TNF)- α release in animals and human volunteers, and the excessive production of TNF-α contributes to the pathology of septic shock. In patients with septic shock, several therapies using soluble TNF receptor and anti-TNF-α chimera antibody have been tried but were not effective (Newton and Decicco, 1999). Therefore, preventing the elevation of pro-inflammatory cytokine by only one anti-cytokine agent may be insufficient to improve septic shock. Interleukin-10 is known as a potent anti-inflammatory cytokine that acts by inhibiting the production of TNF-α and interleukin-6 by macrophages (Fiorentino et al., 1991); therefore, it is expected that new agents capable of regulating both TNF-α and interleukin-10 at the same time would have therapeutic effects in the treatment of septic shock. We screened synthetic compounds that possessed anti-inflammatory activities not only to inhibit TNF-α production but also to

According to the above hypothesis we found N-[1-(4-{[4-(pyrimidin-2-yl)piperazin-1-yl]methyl}phenyl)cyclopropyl]acetamide (Y-39041). We have shown that the compound is a potent up-regulator and down-regulator of lipopolysaccharide-induced interleukin-10 production and TNF- α production, respectively, by the oral administration route. Phosphodiesterase-IV inhibitors and adenosine derivatives possess regulatory activity on TNF-α and interleukin-10 production (Newton and Decicco, 1999). The compound showed neither inhibitory activity for phosphodiesterase-IV nor binding affinity for the adenosine A2A receptor at 10⁻⁵ M in vitro. Furthermore, oral treatment with Y-39041 completely protected mice from lipopolysaccharide-induced death not only by the administration prior to lipopolysaccharide injection but also by the administration after lipopolysaccharide injection.

2. Materials and methods

Female BALB/c mice were purchased from Japan Charles River (Kanagawa, Japan). Mice were used at 6–7 weeks of age. The compound was synthesized in our

E-mail address: fukuda_tetsuko@yoshitomi.co.jp (T. Fukuda).

augment interleukin-10 production in lipopolysaccharidestimulated mice in vivo.

^{*} Corresponding author. Tel.: +81-979-23-8959; fax: +81-979-24-3127

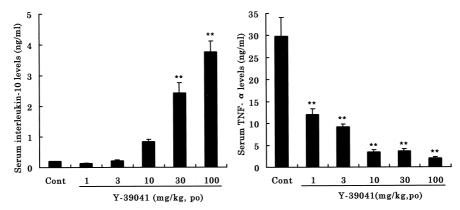


Fig. 1. Y-39041 increases lipopolysaccharide-induced interleukin-10 production and inhibits TNF- α production in mice. Groups of five mice were treated orally with Y-39041 30 min prior to lipopolysaccharide injection (0.5 mg/kg, i.p.). Amounts of interleukin-10 and TNF- α in the serum were measured 1.5 h after lipopolysaccharide injection. Results are expressed as the mean \pm S.E.M. **P < 0.01 significantly different from control (Dunnett method).

laboratories. Lipopolysaccharide from *Escherichia coli* (serotype 0111:B4 or 055:B5) was purchased from Difco Laboratories (Detroit, USA). Y-39041 was suspended in 0.5% hydroxypropylmethylcellulose solution. Lipopolysaccharide was dissolved in 0.9% saline.

Y-39041 was orally administered to mice 30 min prior to i.p. injection of lipopolysaccharide (0111:B4, 0.5 mg/kg). Blood samples were obtained at 1.5 h after lipopolysaccharide injection. The samples were centrifuged and the serum was collected and stored at -30° C until use for cytokine determination. Amounts of interleukin-10 and TNF- α were measured using enzyme-linked immunosorbent assay (ELISA) kits. The specific ELISA for murine interleukin-10 and TNF- α were purchased from Genzyme (MA, USA) and BioSource (CA, USA), respectively. Assays were performed as indicated by the manufacturer's instructions. The lower detection limit is 15 pg/ml for interleukin-10 and TNF- α .

Endotoxin shock was induced by i.p. injection of lipopolysaccharide (055:B5, 7.5 mg/kg). The compound was orally administered 30 min prior to or after lipopolysaccharide injection. Survival was monitored 3 days after lipopolysaccharide injection.

Significant differences in cytokine production were determined by the one-way analysis of Dunnett method. Significant differences in survival rate were calculated using Wilcoxon method. *P* values less than 0.05 were considered statistically significant.

3. Results

The i.p. injection of lipopolysaccharide (0.5 mg/kg) to mice caused the elevation of interleukin-10 and TNF- α serum concentration at 1.5 h (Fig. 1). The oral treatment with Y-39041 (30, 100 mg/kg) significantly augmented lipopolysaccharide-induced interleukin-10 production. Especially, in Y-39041 (30 mg/kg)-treated group, an approximately 10-fold increase in interleukin-10 production over the untreated control was observed. In addition, lipopolysaccharide-induced TNF- α production was significantly decreased by Y-39041 treatment at doses of 10–100 mg/kg, p.o. (about 80% suppression).

Eight of ten mice died within 1-2 days after i.p. injection of lipopolysaccharide (7.5 mg/kg). In the group

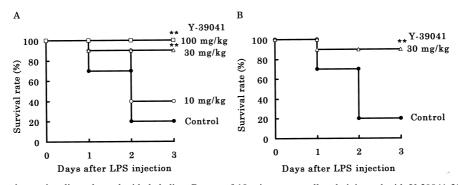


Fig. 2. Y-39041 protects mice against lipopolysaccharide lethality. Groups of 10 mice were orally administered with Y-39041 30 min before (A) or after (B) lipopolysaccharide injection (7.5 mg/kg). Survival was monitored 3 days after lipopolysaccharide injection. **P < 0.01 significantly different from control (Wilcoxon method).

administered with 30 and 100 mg/kg of the compound 30 min prior to lipopolysaccharide injection, 90% and 100% of lipopolysaccharide-injected mice survived, respectively (Fig. 2). In the group administered with 30 mg/kg of the compound 30 min after lipopolysaccharide injection, 90% of lipopolysaccharide-injected mice survived.

4. Discussion

In patients with septic shock, a blood TNF- α level is detected up to 10 days after the onset of shock. TNF-α also plays a major role in systemic toxicity associated with sepsis (Deitch 1998). An anti-TNF-α chimera antibody improved survival and organ function in animal endotoxemia models (Beutler et al., 1985). Interleukin-10 has already been shown to protect mice against lethal endotoxemia (Howard et al., 1993). It has been reported that the combined treatment with anti-TNF-α antibody and interleukin-10 produces an additive therapeutic effect on development of arthritis in collagen-induced arthritis in mice (Walmsley et al., 1996). Therefore, elimination of TNF-α with anti-TNF-α antibody and administration of interleukin-10 are expected to be therapeutic for diseases associated with TNF- α , suggesting that agents having the dual regulatory activities, namely interleukin-10-enhancing and TNF-α-inhibiting activities, should be used clinically in the near future.

Y-39041 is a dual cytokine regulator suppressing TNF- α production and augmenting interleukin-10 production at the same time and at almost the same dose. In in vivo preliminary experiments, the pretreatment of mice with a murine anti-interleukin-10 antibody augmented lipopolysaccharide-induced TNF-α production, and Y-39041 inhibited the overproduction of TNF- α . The above findings suggest that the compound independently regulates the production of TNF- α and interleukin-10. The mechanism of its dual regulatory effects is unclear. The compound showed no inhibitory activity on lipopolysaccharideinduced TNF-α production from human peripheral blood mononuclear cells at 10⁻⁵ M in vitro. However, lipopolysaccharide-induced TNF-α production was inhibited by addition of serum in mice given orally with 30 mg/kg Y-39041. Therefore, it is considered that Y-39041 decreases amounts of TNF-α via an induction of TNF-α inhibitory factors in serum. This compound showed no inhibitory activity for phosphodiesterase-IV (-2%), cyclooxygenase-I (-5%), or cyclooxygenase-II (-17%) and no binding affinity for adenosine A_{2A} receptor (7%) at 10^{-5} M in vitro. Therefore, the pharmacological profile of the compound is different from that of phosphodiesterase-IV inhibitors and non-steroidal anti-inflammatory agents. The compound had no binding affinity for TNF-α in binding assay (22% inhibition at 10⁻⁵ M), suggesting that it has no antagonistic effect on TNF- α .

We observed that oral administration of Y-39041 prior to lipopolysaccharide injection protected mice from lethal endotoxic shock. As this administration schedule of the compound in lipopolysaccharide-induced lethality of mice was almost the same as the lipopolysaccharide-induced cytokine production, the compound may protect mice from lipopolysaccharide-induced shock via a drastic increase of interleukin-10 production and at the same time suppression of TNF-α production. Interestingly, Y-39041 also protected mice from lipopolysaccharide-induced shock by the administration after lipopolysaccharide injection. In a cecal ligation puncture model, interleukin-10 decreased mortality when given after induction of sepsis, but anti-TNF- α antibody had no effect on the survival rate (Kato et al., 1995). Therefore, it is considered that the inhibitor of TNF- α production may not be effective in septic shock in humans. The compound that augments interleukin-10 production and inhibits TNF- α production at the same time may be effective in septic shock patients. These results and findings suggest that the therapeutic effect of Y-39041 on lipopolysaccharide-induced shock model may occur through up-regulation of endogenous interleukin-10.

Nitric oxide (NO) is thought to play a major role in lipopolysaccharide-induced lethality. In patients with rheumatoid arthritis, the treatment of anti-TNF- α antibody reduced NO overexpression (Perkins et al., 1998). Though Y-39041 has no inhibitory activity on inducible NO synthase at 10^{-5} M in vitro, it cannot be ruled out that it indirectly inhibits NO production in vivo. Our results show that Y-39041 augments the production of interleukin-10 and suppresses the production of TNF- α at the same time. TNF- α is known to be involved in the pathogenesis of rheumatoid arthritis and Crohn's disease. Y-39041 would be a therapeutic agent in patients with not only septic shock but also rheumatoid arthritis and Crohn's disease.

In conclusion, we found a novel synthetic compound, Y-39041, as a dual cytokine regulator suppressing TNF- α production and augmenting interleukin-10 production at the same time. In addition, Y-39041 completely protected mice from lipopolysaccharide-induced death. These findings suggest that Y-39041 would be a useful therapeutic drug for the treatment of TNF- α -associated diseases such as septic shock, rheumatoid arthritis, and Crohn's diseases.

Acknowledgements

We thank Dr. M. Terasawa for helpful discussion.

References

Beutler, B., Milsark, I.W., Cerami, A., 1985. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229, 869–871.

Deitch, E.A., 1998. Animal models of sepsis and shock: a review and lessons learned. Shock 9, 1–11.

- Fiorentino, D.F et al., 1991. Interleukin-10 inhibits cytokine production by activated macrophages. J. Immunol. 147, 3815–3822.
- Howard, M., Muchamuel, S., Andrade, S., Menon, S., 1993. Interleukin 10 protects mice from lethal endotoxemia. J. Exp. Med. 177, 1205– 1208.
- Kato, T. et al., 1995. Interleukin 10 reduces mortality from severe peritonitis in mice. Antimicrob. Agents Chemother. 39, 1336–1340.
- Newton, R.C., Decicco, C.P., 1999. Therapeutic potential and strategies for inhibiting tumor necrosis factor- α . J. Med. Chem. 42, 2295–2314.
- Perkins, D.J., St Clair, E.W., Misukonis, M.A., Weinberg, J.B., 1998. Reduction of NOS2 overexpression in rheumatoid arthritis patients treated with anti-tumor necrosis factor α monoclonal antibody (cA2). Arthritis Rheum. 41, 2205–2210.
- Walmsley, M., Katsikis, P.D., Abrey, E., Parry, S., Williams, R.O., Maini, R.N., Feldmann, M., 1996. Interleukin-10 inhibition of the progression of established collagen-induced arthritis. Arthritis Rheum. 39, 495–503.